Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage

نویسندگان

  • Janice S. Chen
  • Brendan Colón
  • Brendon Dusel
  • Marika Ziesack
  • Jeffrey C. Way
  • Joseph P. Torella
  • Guo-Qiang Chen
چکیده

Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB's physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.

Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that ser...

متن کامل

Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones.

Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid ...

متن کامل

Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents.

β-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate, Ralstonia eutropha H16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. In R...

متن کامل

BIOENERGYAND BIOFUELS Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly su...

متن کامل

Application of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha

The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015